Eligibility & Enrollment

To find the financial support program that may be right for your patient, answer a few questions with the financial assistance tool, which will guide them through some of their options and indicate any next steps.

Want more information about some of their options?
Take a look at some potential financial support programs.

Here are a few things you may need on hand:

  • Patient information: full name, date of birth, mailing address, email, phone (home and/or mobile) and insurance information
  • Prescribing doctor's information: first/last name, practice name, address and phone
  • Patient's financial eligibility information: number of people in the patient's household (including patient) and annual net household income*

*Not required for all programs

Contact Us

Questions? Contact ALECENSA Access Solutions

Call 888-249-4918 (Mon.–Fri., 6AM–5PM PST)

ALECENSA Support Services

Helpful Resources for
Your Practice

Find information and resources for benefits investigations, billing and coding and more.

Forms and Docs

Forms and Documents

Helpful forms and documents you may need for patient assistance and access.

Indications & Important Safety Information

Indications

ALECENSA is a kinase inhibitor indicated for:

  • adjuvant treatment in adult patients following tumor resection of anaplastic lymphoma kinase (ALK)-positive non-small cell lung cancer (NSCLC) (tumors ≥4 cm or node positive), as detected by an FDA-approved test
  • treatment of adult patients with ALK-positive metastatic NSCLC as detected by an FDA-approved test

Warnings and Precautions

Hepatotoxicity

  • Severe hepatotoxicity, including drug-induced liver injury, occurred in patients treated with ALECENSA. Hepatotoxicity occurred in 41% of 533 patients treated with ALECENSA and the incidence of Grade ≥3 hepatotoxicity was 8%. In the ALINA study, hepatotoxicity occurred in 61% of patients treated with ALECENSA and the incidence of Grade ≥3 hepatotoxicity was 4.7%. The majority (72% of 136 patients) of elevated transaminases occurred during the first 3 months of treatment. Treatment discontinuation due to hepatotoxicity occurred in 3.6% of patients who received ALECENSA in the pooled safety population and 1.6% of patients treated in the ALINA study
  • Concurrent elevations in alanine transaminase (ALT) or aspartate transaminase (AST) greater than or equal to 3 times the ULN and total bilirubin greater than or equal to 2 times the ULN, with normal alkaline phosphatase, occurred in less than 1% of patients treated with ALECENSA. Three patients with Grades 3-4 AST/ALT elevations had drug-induced liver injury (documented by liver biopsy in 2 cases)
  • Monitor liver function tests including ALT, AST, and total bilirubin every 2 weeks during the first 3 months of treatment, then once a month and as clinically indicated, with more frequent testing in patients who develop transaminase and bilirubin elevations. Based on the severity of the adverse drug reaction, withhold ALECENSA and resume at a reduced dose, or permanently discontinue ALECENSA

Interstitial Lung Disease (ILD)/Pneumonitis

  • ILD/pneumonitis occurred in 1.3% of 533 patients treated with ALECENSA with 0.4% of patients experiencing Grade 3 ILD/pneumonitis. Five patients (0.9%) discontinued ALECENSA due to ILD/pneumonitis. The median time-to-onset of Grade 3 or higher ILD/pneumonitis was 2.1 months (range: 0.6 months to 3.6 months)
  • Promptly investigate for ILD/pneumonitis in any patient who presents with worsening of respiratory symptoms indicative of ILD/pneumonitis (eg, dyspnea, cough, and fever)
  • Immediately withhold ALECENSA treatment in patients diagnosed with ILD/pneumonitis and permanently discontinue ALECENSA if no other potential causes of ILD/pneumonitis have been identified

Renal Impairment

  • Renal impairment occurred in 12% of 533 patients treated with ALECENSA, including Grade ≥3 in 1.7% of patients, of which 0.4% were fatal events
  • The median time to Grade ≥3 renal impairment was 3.7 months (range 0.5 to 31.8 months). Dosage modifications for renal impairment were required in 2.4% of patients
  • Permanently discontinue ALECENSA for Grade 4 renal toxicity. Withhold ALECENSA for Grade 3 renal toxicity until recovery to less than or equal to 1.5 times ULN, then resume at reduced dose

Bradycardia

  • Symptomatic bradycardia occurred in patients treated with ALECENSA. Bradycardia occurred in 11% of 533 patients treated with ALECENSA. Twenty percent of 521 patients for whom serial electrocardiograms (ECGs) were available had post-dose heart rates of less than 50 beats per minute (bpm)
  • Monitor heart rate and blood pressure regularly. For asymptomatic bradycardia, dose modification is not required. For symptomatic bradycardia that is not life-threatening, withhold ALECENSA until recovery to asymptomatic bradycardia or to a heart rate ≥60 bpm and evaluate concomitant medications known to cause bradycardia, as well as anti-hypertensive medications. If bradycardia is attributable to a concomitant medication, resume ALECENSA at a reduced dose upon recovery to asymptomatic bradycardia or to a heart rate of ≥60 bpm, with frequent monitoring as clinically indicated
  • Permanently discontinue ALECENSA in cases of life-threatening bradycardia if no contributing concomitant medication is identified or for recurrence of life-threatening bradycardia

Severe Myalgia and Creatine Phosphokinase (CPK) Elevation

  • Severe myalgia and creatine phosphokinase (CPK) elevation occurred in patients treated with ALECENSA. Myalgia (including muscle- and musculoskeletal-related reactions) occurred in 31% of 533 patients treated with ALECENSA, including Grade ≥3 in 0.8% of patients. Dosage modifications for myalgia events were required in 2.1% of patients
  • Of the 491 with CPK laboratory data available, elevated CPK occurred in 56% of patients, including 6% Grade ≥3. The median time to Grade ≥3 CPK elevation was 15 days (interquartile range 15-337 days). Dosage modifications for elevation of CPK occurred in 5% of patients. In the ALINA study, elevated CPK occurred in 77% of 128 patients with CPK laboratory data, including 6% Grade ≥3 elevations
  • Advise patients to report any unexplained muscle pain, tenderness, or weakness. Assess CPK levels every 2 weeks for the first month of treatment and as clinically indicated in patients reporting symptoms. Based on the severity of the CPK elevation, withhold ALECENSA, then resume or reduce dose

Hemolytic Anemia

  • Hemolytic anemia occurred in patients treated with ALECENSA. Hemolytic anemia was initially reported with ALECENSA in the postmarketing setting, including cases associated with a negative direct antiglobulin test (DAT) result. Assessments for the determination of hemolytic anemia were subsequently collected in the ALINA study, where hemolytic anemia was observed in 3.1% of patients treated with ALECENSA
  • If hemolytic anemia is suspected, withhold ALECENSA and initiate appropriate laboratory testing. If hemolytic anemia is confirmed, consider resuming at a reduced dose upon resolution or permanently discontinue ALECENSA

Embryo-Fetal Toxicity

  • ALECENSA can cause fetal harm when administered to pregnant women. Administration of alectinib to pregnant rats and rabbits during the period of organogenesis resulted in embryo-fetal toxicity and abortion at maternally toxic doses with exposures approximately 2.7-fold those observed in humans with alectinib 600 mg twice daily. Advise pregnant women of the potential risk to a fetus
  • Advise females of reproductive potential to use effective contraception during treatment with ALECENSA and for 5 weeks following the last dose
  • Advise males with female partners of reproductive potential to use effective contraception during treatment with ALECENSA and for 3 months following the last dose

Most Common Adverse Reactions

  • The most common adverse reactions (≥20%) were hepatotoxicity (41%), constipation (39%), fatigue (36%), myalgia (31%), edema (29%), rash (23%), and cough (21%)

Use in Specific Populations

Lactation

  • Because of the potential for serious adverse reactions in breastfed infants from ALECENSA, advise a lactating woman not to breastfeed during treatment with ALECENSA and for 1 week after the last dose

You may report side effects to the FDA at 1-800-FDA-1088 or www.fda.gov/medwatch. You may also report side effects to Genentech at 1-888-835-2555.

Please see additional Important Safety Information in full Prescribing Information.

    • ALECENSA [prescribing information]. South San Francisco, CA: Genentech USA, Inc; 2024.

      ALECENSA [prescribing information]. South San Francisco, CA: Genentech USA, Inc; 2024.

    • Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Non-Small Cell Lung Cancer V.10.2024. © National Comprehensive Cancer Network, Inc. 2024. All rights reserved. Accessed September 24, 2024. To view the most recent and complete version of the guideline, go online to NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use, or application, and disclaims any responsibility for their application or use in any way. See the NCCN Guidelines® for detailed recommendations.

      Referenced with permission from the NCCN Clinical Practice Guidelines in Oncology (NCCN Guidelines®) for Non-Small Cell Lung Cancer V.10.2024. © National Comprehensive Cancer Network, Inc. 2024. All rights reserved. Accessed September 24, 2024. To view the most recent and complete version of the guideline, go online to NCCN.org. NCCN makes no warranties of any kind whatsoever regarding their content, use, or application, and disclaims any responsibility for their application or use in any way. See the NCCN Guidelines® for detailed recommendations.

    • Arbour KC, Riely GJ. Diagnosis and treatment of anaplastic lymphoma kinase-positive non-small cell lung cancer. Hematol Oncol Clin North Am. 2017;31(1):101-111.

      Arbour KC, Riely GJ. Diagnosis and treatment of anaplastic lymphoma kinase-positive non-small cell lung cancer. Hematol Oncol Clin North Am. 2017;31(1):101-111.

    • Gainor JF, Shaw AT. Novel targets in non-small cell lung cancer: ROS1 and RET fusions. Oncologist. 2013;18(7):865-875.

      Gainor JF, Shaw AT. Novel targets in non-small cell lung cancer: ROS1 and RET fusions. Oncologist. 2013;18(7):865-875.

    • Chevallier M, Borgeaud M, Addeo A, Friedlaender A. Oncogenic driver mutations in non-small cell lung cancer: past, present and future. World J Clin Oncol. 2021;12(4):217-237.

      Chevallier M, Borgeaud M, Addeo A, Friedlaender A. Oncogenic driver mutations in non-small cell lung cancer: past, present and future. World J Clin Oncol. 2021;12(4):217-237.

    • Chen MF, Chaft JE. Early-stage anaplastic lymphoma kinase (ALK)-positive lung cancer: a narrative review. Transl Lung Cancer Res. 2023;12(2):337-345. doi: 10.21037/tlcr-22-631

      Chen MF, Chaft JE. Early-stage anaplastic lymphoma kinase (ALK)-positive lung cancer: a narrative review. Transl Lung Cancer Res. 2023;12(2):337-345. doi: 10.21037/tlcr-22-631

    • Johung KL, Yeh N, Desai NB, et al. Extended survival and prognostic factors for patients with ALK-rearranged non-small-cell lung cancer and brain metastasis. J Clin Oncol. 2016;34(2):123-129.

      Johung KL, Yeh N, Desai NB, et al. Extended survival and prognostic factors for patients with ALK-rearranged non-small-cell lung cancer and brain metastasis. J Clin Oncol. 2016;34(2):123-129.

    • Rangachari D, Yamaguchi N, VanderLaan PA. Brain metastases in patients with EGFR-mutated or ALK-rearranged non-small-cell lung cancers. Lung Cancer. 2015;88(1):108-111. doi: 10.1016/j.lungcan.2015.01.020.

      Rangachari D, Yamaguchi N, VanderLaan PA. Brain metastases in patients with EGFR-mutated or ALK-rearranged non-small-cell lung cancers. Lung Cancer. 2015;88(1):108-111. doi: 10.1016/j.lungcan.2015.01.020.

    • Chouaid C, Danson S, Andreas S, et al. Adjuvant treatment patterns and outcomes in patients with stage IB-IIIA non-small cell lung cancer in France, Germany, and the United Kingdom based on the LuCaBIS burden of illness study. Lung Cancer. 2018;124:310-316.

      Chouaid C, Danson S, Andreas S, et al. Adjuvant treatment patterns and outcomes in patients with stage IB-IIIA non-small cell lung cancer in France, Germany, and the United Kingdom based on the LuCaBIS burden of illness study. Lung Cancer. 2018;124:310-316.

    • Postmus PE, Kerr KM, Oudkerk M, et al. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(suppl 4): iv1-iv21.

      Postmus PE, Kerr KM, Oudkerk M, et al. Early and locally advanced non-small-cell lung cancer (NSCLC): ESMO Clinical Practice Guidelines for diagnosis, treatment and follow-up. Ann Oncol. 2017;28(suppl 4): iv1-iv21.

    • Wan JCM, Massie C, Garcia-Corbacho J, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17(4):223-238.

      Wan JCM, Massie C, Garcia-Corbacho J, et al. Liquid biopsies come of age: towards implementation of circulating tumour DNA. Nat Rev Cancer. 2017;17(4):223-238.

    • Kris MG, Mitsudomi T, Peters S. Adjuvant therapies in stages I–III epidermal growth factor receptor-mutated lung cancer: current and future perspectives. Transl Lung Cancer Res. 2023;12(4):824-836.

      Kris MG, Mitsudomi T, Peters S. Adjuvant therapies in stages I–III epidermal growth factor receptor-mutated lung cancer: current and future perspectives. Transl Lung Cancer Res. 2023;12(4):824-836.

    • West H, Hu X, Zhang S, et al. Treatment patterns and outcomes in resected early-stage non-small cell lung cancer: an analysis of the SEER-Medicare data. Clin Lung Cancer. 2023;24(3):260-268.

      West H, Hu X, Zhang S, et al. Treatment patterns and outcomes in resected early-stage non-small cell lung cancer: an analysis of the SEER-Medicare data. Clin Lung Cancer. 2023;24(3):260-268.

    • Yang P, Kulig K, Boland JM, et al. Worse disease-free survival in never smokers with ALK+ lung adenocarcinoma. J Thorac Oncol. 2012;7:90-97.

      Yang P, Kulig K, Boland JM, et al. Worse disease-free survival in never smokers with ALK+ lung adenocarcinoma. J Thorac Oncol. 2012;7:90-97.

    • Shin SH, Lee H, Jeong B-H, et al. Anaplastic lymphoma kinase rearrangement in surgically resected stage IA lung adenocarcinoma. J Thorac Dis. 2018;10:3460-3467.

      Shin SH, Lee H, Jeong B-H, et al. Anaplastic lymphoma kinase rearrangement in surgically resected stage IA lung adenocarcinoma. J Thorac Dis. 2018;10:3460-3467.

    • Dalurzo ML, Avilés-Salas A, Soares FA, et al. Testing for EGFR mutations and ALK rearrangements in advanced non-small-cell lung cancer: considerations for countries in emerging markets. Onco Targets Ther. 2021;14:4671-4692.

      Dalurzo ML, Avilés-Salas A, Soares FA, et al. Testing for EGFR mutations and ALK rearrangements in advanced non-small-cell lung cancer: considerations for countries in emerging markets. Onco Targets Ther. 2021;14:4671-4692.

    • Lindeman NI, Cagle PT, Aisner DL, et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: Guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch Pathol Lab Med. 2018;142(3):321-346.

      Lindeman NI, Cagle PT, Aisner DL, et al. Updated molecular testing guideline for the selection of lung cancer patients for treatment with targeted tyrosine kinase inhibitors: Guideline from the College of American Pathologists, the International Association for the Study of Lung Cancer, and the Association for Molecular Pathology. Arch Pathol Lab Med. 2018;142(3):321-346.

    • LUNGevity Foundation. What you need to know about biomarker testing. Available at: https://www.lungevity.org/sites/default/files/request-materials/LUNGevity-biomarker-testing-booklet-112817.pdf. Accessed February 26, 2024.

      LUNGevity Foundation. What you need to know about biomarker testing. Available at: https://www.lungevity.org/sites/default/files/request-materials/LUNGevity-biomarker-testing-booklet-112817.pdf. Accessed February 26, 2024.

    • Gregg JP, Li T, Yoneda KY. Molecular testing strategies in non-small cell lung cancer: optimizing the diagnostic journey. Transl Lung Cancer Res. 2019;8(3):286-301.

      Gregg JP, Li T, Yoneda KY. Molecular testing strategies in non-small cell lung cancer: optimizing the diagnostic journey. Transl Lung Cancer Res. 2019;8(3):286-301.

    • Compton CC, Robb JA, Anderson MW, et al. Preanalytics and precision pathology: pathology practices to ensure molecular integrity of cancer patient biospecimans for precision medicine. Arch Pathol Lab Med. 2019;143(11):1346-1363.

      Compton CC, Robb JA, Anderson MW, et al. Preanalytics and precision pathology: pathology practices to ensure molecular integrity of cancer patient biospecimans for precision medicine. Arch Pathol Lab Med. 2019;143(11):1346-1363.

    • Levy BP, Chioda MD, Herndon D, et al. Molecular testing for treatment of metastatic non-small cell lung cancer: how to implement evidence-based recommendations. Oncologist. 2015;20(10):1175-1181.

      Levy BP, Chioda MD, Herndon D, et al. Molecular testing for treatment of metastatic non-small cell lung cancer: how to implement evidence-based recommendations. Oncologist. 2015;20(10):1175-1181.

    • Sakamoto H, Tsukaguchi T, Hiroshima S, et al. CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant. Cancer Cell. 2011;19(5):679-690.

      Sakamoto H, Tsukaguchi T, Hiroshima S, et al. CH5424802, a selective ALK inhibitor capable of blocking the resistant gatekeeper mutant. Cancer Cell. 2011;19(5):679-690.

    • Avrillon V, Pérol M. Alectinib for treatment of ALK-positive non-small-cell lung cancer. Future Oncol. 2017;13(4):321-335.

      Avrillon V, Pérol M. Alectinib for treatment of ALK-positive non-small-cell lung cancer. Future Oncol. 2017;13(4):321-335.

    • Della Corte CM, Viscardi G, Di Liello R, et al. Role and targeting of anaplastic lymphoma kinase in cancer. Mol Cancer. 2018;17(1):30.

      Della Corte CM, Viscardi G, Di Liello R, et al. Role and targeting of anaplastic lymphoma kinase in cancer. Mol Cancer. 2018;17(1):30.

    • Mahato AK, Sidorova YA. RET receptor tyrosine kinase: role in neurodegeneration, obesity, and cancer. Int J Mol Sci. 2020;21(19):7108.

      Mahato AK, Sidorova YA. RET receptor tyrosine kinase: role in neurodegeneration, obesity, and cancer. Int J Mol Sci. 2020;21(19):7108.

    • Kodama T, Hasegawa M, Takanashi K, Sakurai Y, Kondoh O, Sakamoto H. Antitumor activity of the selective ALK inhibitor alectinib in models of intracranial metastases. Cancer Chemother Pharmacol. 2014;74(5):1023-1028.

      Kodama T, Hasegawa M, Takanashi K, Sakurai Y, Kondoh O, Sakamoto H. Antitumor activity of the selective ALK inhibitor alectinib in models of intracranial metastases. Cancer Chemother Pharmacol. 2014;74(5):1023-1028.

    • Löscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx. 2005;2(1):86-98.

      Löscher W, Potschka H. Blood-brain barrier active efflux transporters: ATP-binding cassette gene family. NeuroRx. 2005;2(1):86-98.

    • Deeken JF, Löscher W. The blood-brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res. 2007;13(6):1663-1674.

      Deeken JF, Löscher W. The blood-brain barrier and cancer: transporters, treatment, and Trojan horses. Clin Cancer Res. 2007;13(6):1663-1674.

    • Wu YL, Dziadziuszko R, Ahn JS, et al. Alectinib in resected ALK-positive non-small-cell lung cancer. N Engl J Med. 2024;390(14):1265-1276. doi:10.1056/NEJMoa2310532.

      Wu YL, Dziadziuszko R, Ahn JS, et al. Alectinib in resected ALK-positive non-small-cell lung cancer. N Engl J Med. 2024;390(14):1265-1276. doi:10.1056/NEJMoa2310532.

    • A study comparing adjuvant alectinib versus adjuvant platinum-based chemotherapy in patients with ALK positive non-small cell lung cancer. ClinicalTrials.gov identifier: NCT03456076. https://clinicaltrials.gov/study/NCT03456076. Updated December 13, 2023. Accessed December 15, 2023.

      A study comparing adjuvant alectinib versus adjuvant platinum-based chemotherapy in patients with ALK positive non-small cell lung cancer. ClinicalTrials.gov identifier: NCT03456076. https://clinicaltrials.gov/study/NCT03456076. Updated December 13, 2023. Accessed December 15, 2023.

    • Data on File. Genentech, Inc.

      Data on File. Genentech, Inc.

    • Wu YL, Dziadziuszko R, Ahn JS, et al. Alectinib in resected ALK-positive non–small-cell lung cancer. N Engl J Med. 2024;390(14)(suppl):1265-1276. doi:10.1056/NEJMoa2310532.

      Wu YL, Dziadziuszko R, Ahn JS, et al. Alectinib in resected ALK-positive non–small-cell lung cancer. N Engl J Med. 2024;390(14)(suppl):1265-1276. doi:10.1056/NEJMoa2310532.

    • IQVIA US Claims, December 2022-March 2024.

      IQVIA US Claims, December 2022-March 2024.